Search results for "Field effect"
showing 10 items of 44 documents
Carbon nanotube field-effect devices with asymmetric electrode configuration by contact geometry
2014
We have studied experimentally the conductive properties of single walled carbon nanotube (SWNT) based field-effect type devices, with different contact geometries at the connecting electrode. The device designs are asymmetric with one end of the SWNT having the metal electrode deposited on top and immersing it, while at the other end, the SWNT is on top of the electrode. The devices were made with either gold or palladium as electrode materials, of which the latter resulted in different behavior of the different contact types. This is argued to be caused by the existence of a thin insulating layer of surface adsorbents on the palladium, possibly Pd5O4, the effect of which is enhanced by th…
Carrier localization effect in polarized InGaN multiple quantum wells
2005
Carrier localization effects in polarized InGaN/GaN multiple quantum wells (MQWs) were investigated as a function of well width, d, and In content, x. Using photoreflectance (PR), photoluminescence (PL), PL excitation (PLE), selective excitation of PL, PL excitation power, and time-resolved PL spectroscopy, the dominance of the localization effect against the built-in field effect on carrier recombination dynamics in InxGa1–xN MQWs of different well width (d = 2.0–4.0 nm, x ≈ 0.15) and In content (x ≈ 0.22–0.27, d = 2.5 nm) was revealed. Based on the modeling of the PL spectra by Monte Carlo simulation of exciton hopping and the spectroscopic reference provided by PR, increased In content a…
Layout influence on microwave performance of graphene field effect transistors
2018
The authors report on an in-depth statistical and parametrical investigation on the microwave performance of graphene FETs on sapphire substrate. The devices differ for the gate-drain/source distance and for the gate length, having kept instead the gate width constant. Microwave S -parameters have been measured for the different devices. Their results demonstrate that the cut-off frequency does not monotonically increase with the scaling of the device geometry and that it exists an optimal region in the gate-drain/source and gate-length space which maximises the microwave performance.
Improvement of Hall Effect Current Transducer Metrological Performances in the Presence of Harmonic Distortion
2010
The performance of Hall effect current transducers (HECTs), under distorted waveform conditions, is usually characterized by means of a frequency response test. In this paper, it was investigated if frequency response is able to correctly evaluate the ratio and the phase errors under distorted conditions. Two HECTs, with the accuracy class level of 1% and 0.5%, respectively, were experimentally characterized under two conditions: 1) sinusoidal excitation with frequencies ranging from 50 to 750 Hz, which is the well-known frequency response test, and 2) nonsinusoidal excitation using fundamental frequency and one harmonic with adjusted amplitude and phase shift. It was found that ratio and p…
Dual Substituent Parameter Modeling of Theoretical, NMR and IR Spectral Data of 5-Substituted Indole-2,3-diones
2002
Correlations of AM1 and PM3 theoretical data, 13C-NMR substituent chemical shifts (13C-SCS) and IR carbonyl group wave numbers [ν(C3â•ÂO)] were studied using dual substituent parameter (DSP) models for 5-substituted indole-2,3-diones. For the C7 atom a reverse substituent effect attributed to extended À-polarization was observed. On the other hand, the DSP approaches for the C3 atom showed normal substituent effects with some contribution of reverse effect supported strongly by 13C-SCS correlations. In the ν(C3â•ÂO) and p(C3â•ÂO) DSP correlations the field effect contribution predominates over the resonance effect, which justifies the using of earlier suggested vibrational cou…
Radiofrequency performances of different Graphene Field Effect Transistors geometries
2016
In this work, we investigated on microwave parameters geometry dependence in Graphene Field Effect Transistors (GFETs). A DC and RF characterization of the fabricated GFETs has been performed. The parametric analysis was carried out on 24 GFET families fabricated on the same chip and differing only for the channel length (Δ) and the gate length (Lg). In order to obtain a statistical average, each family included ten devices with the same geometry.Our study demonstrates that the output resistance and the cut-off frequency depend on both Δ and Lg. As expected, Rout increases with the graphene channel surface thus confirming the good quality of the fabrication procedures. An optimum region whi…
CMOS-compatible nanoscale gas-sensor based on field effect
2009
The integration of a solid state gas sensor of the metal oxide sensor type into CMOS technology still is a challenge because of the high temperatures during metal oxide annealing and sensor operation that do not comply with silicon device stability. In the presence of an external electric field sensor sensitivity can be controlled through a change of the Fermi energy level and consequently it is possible to reduce the operation temperature. Based in this effect, a novel field effect gas sensor was developed resembling a reversed insulated : gate field effect transistor (IGFET) with the thickness of gas sensing layer in the range of the Debye length (L D ). Under these conditions the control…
Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas
2020
We demonstrate an efficient, simple, and low-cost approach for enhanced nanoscopy in individual green emitting perovskite (CsPbBr3) nanocrystals via TiO2 dielectric nanoantenna. The observed three- to five-fold emission enhancement is attributed to near-field effects and emission steering promoted by the coupling between the perovskite nanocrystals and the dielectric sub-micrometric antennas. The dark-field scattering configuration is then exploited for surface-enhanced absorption measurements, showing a large increase in detection sensitivity, leading to the detection of individual nanocrystals. Due to the broadband spectral response of the Mie sub-micrometric antennas, the method can be e…
Bright Beaches of Nanoscale Potassium Islands on Graphite in STM Imaging
2008
We demonstrate, via scanning tunneling microscopy (STM) measurements performed at 48 K, the existence of "bright beaches" at the edges of K islands (diameter approximately 5-500 nm) on the graphite surface. The enhanced tunneling current is only observed in monolayer-high islands on graphite, and not in islands of similar geometry on top of a K monolayer film. First-principles density functional calculations and STM simulations suggest that this is an STM field effect, which appears as the positive tip attracts donated electrons back to the metallic K islands. The restored charge accumulates preferentially at the island edges.
High-Mobility Ambipolar Magnetotransport in Topological Insulator Bi2Se3 Nanoribbons
2021
Nanoribbons of topological insulators (TIs) have been suggested for a variety of applications exploiting the properties of the topologically protected surface Dirac states. In these proposals it is crucial to achieve a high tunability of the Fermi energy, through the Dirac point while preserving a high mobility of the involved carriers. Tunable transport in TI nanoribbons has been achieved by chemical doping of the materials so to reduce the bulk carriers' concentration, however at the expense of the mobility of the surface Dirac electrons, which is substantially reduced. Here we study bare ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ nanoribbons transferred on a variety of oxide substrates and dem…